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Abstract—Being able to quickly adapt to changes in dynamics
is crucial in model-based control for object manipulation tasks.
Specifically, data efficiency is key when aiming for fast adaptation
of the inverse dynamics model parameters. The loss function is
an important element in how effectively an optimizer updates
model parameters. Thus, we propose to learn how to adapt fast
by learning a loss function. More concretely, we propose to
learn structured, state-dependent loss functions through a meta-
training phase. We then replace standard losses with our learned
losses during online adaptation tasks. We evaluate our proposed
approach on inverse dynamics learning tasks on real hardware
data. We find that structured learned losses improve online
adaptation speed, when compared to standard loss functions.

I. INTRODUCTION

Truly autonomous robots need to be able to adapt their
internal models when interacting with the environment. For
instance, a robot that has learned its own dynamics, needs
to be able to adapt to the changes in dynamics caused by
picking and placing a heavy object (Figure 1). Humans are
remarkably good at adapting to such changes very quickly.
And studies on how humans adapt to external forces suggest
that we learn how to adapt to such changes in dynamics, and
that we remember the adaptation strategy when encountering
previously experienced perturbations [8].

The larger goal of our work is to learn representations
that endow robots with similar capabilities. In this work,
we specifically look at fast learning or adaptation of inverse
dynamics for model-based control using structured learned
loss. While many robots have analytical inverse dynamics
models, they are often crude approximations to the actual
dynamics of the robot. Furthermore, even if the models would
be accurate enough for the robot’s dynamics, they do not
model the changes in dynamics caused by interaction with
the environment. Thus, a lot of research has gone into data-
driven methods for model-based control [16], with the hope
that learning-based methods can either learn better models
altogether [17, 19], or learn error-models on top of existing
analytical ones [18].

In that context, online learning or adaptation of inverse
dynamics models has been studied [21, 14, 6]. When such
online learning methods are deployed on real robots, one has
to be concerned with computational and data efficiency of the
optimizer. An online learner needs to make the most out of
the recently observed data with as few parameter updates as
possible. A key insight of our work is that standard losses, such
as the Mean-Squared-Error (MSE), are not state-dependent,
but observed errors and how much we should correct for
them can be state-dependent. For instance, an optimizer could
update dynamics parameters aggressively throughout most of
the state-space, but needs to be more conservative around

Fig. 1: Picking and placing a milk carton with KUKA.

singular configurations, or after overcoming the effects of
static friction. Learned, state-dependent losses could poten-
tially incorporate such issues and thus lead to faster inverse
dynamics model learning. By adding this type of structure,
we also are able to visualize more about our loss, allowing us
some insight into the ”black box” and consequently reducing
the amount of researcher time used tuning our learning. Thus,
in this work, we aim at improving data efficiency, by replacing
standard loss functions for inverse dynamics learning, with
learned, state-dependent losses.

Towards this goal, we develop a meta-learning frame-
work, that trains loss functions for fast adaptation of inverse
dynamics models. Our approach builds on [3], a gradient-
based meta-learning framework for learning loss functions.
This work proposed learning losses that are parameterized
as neural networks for various learning tasks. Here, we
contribute the following: 1) we utilize [3] to formulate an
offline meta-training algorithm for training loss functions for
inverse dynamics learning, and 2) we propose two structured
loss representations specifically suitable for learning inverse
dynamics models, one of which is state-dependent.

We evaluate our proposed loss representations on several
inverse dynamics learning tasks on real hardware data of a
7 degree of freedom robot arm. Our results show that meta-
learning structured losses leads to more robust meta-training
of the losses, as compared to using typical neural network
representations for the loss function. Furthermore, we find
that our structured losses lead to faster learning and online
adaptation of inverse dynamics models. Finally, we show
that the proposed state-dependent loss outperforms all other
loss representations in terms of adaptation speed, providing
experimental validation for the thought that learning state-
dependent loss functions can improve data efficiency in inverse
dynamics learning.
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Fig. 2: The Inverse Dynamics Controller. See Section II for details

II. BACKGROUND AND RELATED WORK

A typical model-based control loop for inverse dynamics
control is shown in Figure 2. The controller accepts a target
position qtarget and outputs a plan - the desired joints, joint ve-
locities and joint accelerations Qd = {qd , q̇d , q̈d} for each time
step of the trajectory. The inverse dynamics model takes the
current joint position q and velocity q̇, as well as the desired
acceleration q̈d as input and outputs a feed forward torque
u f f . The controller then combines u f f with the feedback u f b
to produce the total desired torque τ applied on the robot.
The feedback component is computed through a PD-control
law that corrects for the errors caused due to an inaccurate
dynamics model: u f b = Kp(qd−q)+Kd(q̇d− q̇). u f b corrects
for inaccuracies in the dynamics model, and pushes the robot
towards the desired trajectory. Ideally, for compliant and fast
motion, we want small contributions from the feedback, and
most of the torque to come from u f f , motivating the need for
learning accurate inverse dynamics models.

A. Learning Inverse dynamics

There has been significant work on computationally efficient
methods for learning and adapting inverse dynamics models
[9, 23, 20, 17, 6], including learning incrementally in an online
manner [21, 4, 13, 11]. Other works assume a prior model
which may be inaccurate in the real world, and attempts to
learn a model over this error instead of the entire inverse
dynamics model [18, 14, 15]. In contrast to our work, all of
these approaches learn a dynamics model that optimizes the
mean-squared error, and do not benefit from a state-dependent
loss function that can lead to faster learning online.

B. Meta-Learning

Learning-to-adapt can be considered a form of meta-
learning, where an agent attempts to learn how to learn from
observations. We can segregate such approaches roughly into
three classes: Methods that meta-learn initialization of models
from which an agent can quickly adapt to new scenarios [5],
methods that learn an optimizer representation [1, 12], and
finally methods that learn loss functions [3, 10, 24], which we
focus on. Specifically, this work builds on the work by [3]. We
modify their framework for training structured loss functions
for inverse dynamics learning, and use it to efficiently update
dynamics models at test time.

III. LEARNING LOSS FUNCTIONS FOR INVERSE DYNAMICS
MODELS

Our loss-learning framework comprises of two phases:
Phase 1 (meta training): A process by which we use data
collected from a motion task to optimize the parameters φ of
our loss function Llearnφ

. Phase 2 (meta testing): A process
by which we train our inverse dynamics model by optimizing
the Llearnφ

with optimal parameters φ∗ to train fθ on new
tasks. We start out by recapping how to learn inverse dynamics
models given any loss function.

A. Learning Models for Inverse Dynamics Control

We aim to learn a model of the inverse dynamics - i.e given
the current joint positions q and velocities q̇, and the next
desired joint acceleration q̈d , we want to learn a function f ,
parameterized by θ such that:

u f f = fθ (q, q̇, q̈d)

where u f f is the feed-forward torque that should be applied
to achieve the desired acceleration q̈d as per the inverse
dynamics model. In this work, we model f via a neural
network parameterized by θ , and we aim to learn it from
observed data as quickly as possible. This model is trained on a
data set of N trajectories D = {{Qt = (qt , q̇t , q̈t+1),τt}T

t=1}N
n=1

of length T by minimizing a loss LMSE between the predicted
control outputs (u f f ) and ground truth torque values (τ).

This loss is domain-independent and can be used for any
function approximation problem. We believe that learning loss
functions for inverse dynamics learning can lead to losses that
update these models more effectively. Next, we propose loss
functions that can be learned offline during a meta-training
phase, and can then be used instead of the LMSE to update
the dynamics parameters θ .

B. Loss Function Representations

We explore the following loss architectures in our work:
1) Multi-Layer Perceptron (mlp): In [3] the learned loss

is represented as a neural network. Similar to the MSE loss,
the learned loss l = Llearnφ

(τ̂,τ) takes as input the predicted
output τ̂ = fθ and its corresponding ground truth value τ ,
and outputs a loss value that computes an effective distance
between fθ and τ . The loss architecture is a fully-connected
MLP network with 3 layers of 40 neurons each, with a ReLu
activation in the hidden layer and a Softplus activation applied
to the output. This loss representation is our baseline.

2) Structured loss (structured): The mlp loss architecture is
a one size fits all solution that is not tailored to the structure
of the inverse dynamics learning problem. Here, we propose
to use a parameterized loss of the form:

Llearnφ
=

J

∑
j=1

φ j( fθ j− τ j)
2, (1)

where J denotes the number of controllable joints and φ j ∈R1

are learn-able parameters, one per joint j. This structured
learned loss takes into account to the shape of the inverse-
dynamics model’s outputs (i.e a predicted torque fθ per joint),



and learns to assign different weights to the different joints.
In general, dynamics errors in some joints can cause poor
tracking of desired joint acceleration. Intuitively, this loss
learns to weigh torque error on crucial joints more heavily
than others. Updating more important joints faster likely leads
to improvement in online learning speed.

3) State Dependent loss (state-dependent): Our proposed
structured loss assumes constant learned weights for the whole
robot state space. Here, we introduce a state-dependent loss
with weights φ j that are a function of the current joint state
{q, q̇}:

Llearnφ
=

J

∑
j=1

φ j(q, q̇)( fθ j − τ j)
2. (2)

where the functions φ j are represented as neural networks with
hidden layer of size 32 with ReLUs as activation functions.
State-dependent loss can improve upon structured loss by
adapting to (ie reducing weight) areas of the state space where
the robot has lower control authority (eg. around singularities)

Moreover, some state-action-next-state transitions are non-
deterministic on hardware, due to effects like hysteresis. In
such cases, a state-dependent loss function can learn to reduce
the weights on torque errors in hard to approximate regions.

Algorithm 1 Learning Loss functions at (meta-train)
1: Randomly initialize φ

2: for each epoch do
3: for each batch in epoch do
4: Randomly initialize θ

5: Sample batchA = QA,τA
6: Sample batchB = QB,τB
7: for each iter in itersmax do
8: Calculate θnew from Llearnφ

with the old φ

9: θnew← θ −α.∇θ Llearnφ
( fθ (QA),τA)

10: Update φ based on fθnew ’s performance
11: φ ← φ −η .∇φ LMSE( fθnew (QB),τB)
12: end for
13: end for
14: end for

C. Learning loss functions

These loss functions can be learned offline, during a meta-
training phase. We employ stochastic gradient descent (SGD)
to update the parameters φ of the learned loss. Note that at
each step of the optimization process, φ must be updated in
a way such that training the model fθ with the corresponding
Llearnφ

brings us a step closer to obtaining an accurate model
of the robot’s inverse-dynamics. This can be checked by
evaluating the resultant inverse-dynamics model with LMSE.

More concretely, we first update the parameters θ via the
update rule θnew ←− θ − α∇θ Llearnφ

using batches {Q,τ}
from the meta-train data set. We can now evaluate this updated
model fθnew , and therefore implicitly the Llearnφ

.
As per [3], we use the notion of a task loss to perform this

evaluation. In our experiments, this is done using the Mean
Squared Error function (formalized as LMSE( fθnew(Q),τ)). We
can now use this metric to calculate an update to φ . In our

(a) loss perform. on train (b) on test data

(c) optim. trace on train (d) on test data

Fig. 3: Hardware meta-training phase: (a) and (b) plot the
performance of the learned losses as a function of meta-training
epochs. (c) and (d) show loss traces during parameter learning of
fθ when using the final meta (learned) and fixed (mse) losses. The
state-dependent loss is visibly more stable to train and is faster to
optimize the inverse-dynamics model, compared to other learned
losses. Results are averaged across 5 seeds.

SGD setting, we can write down the update rule for φ as:

φ ←− φ −η .∇φ LMSE( fθnew(Q),τ) (3)

While it is possible to analytically derive this gradient (See
[3]), one can use modern libraries for such meta-gradient
computations. In particular, we use higher [7]. Our approach
for meta-training a learned loss for learning inverse-dynamics
models is summarized in Algorithm 1

IV. HARDWARE EXPERIMENTS

We now turn to evaluating our proposed loss architectures
on real hardware data.

A. Meta-training: Learning loss functions

We first evaluate the meta-training phase - in particular,
how well our learned losses can optimize inverse dynamics
models on unseen data. For these experiments, we collect
sine motion data at frequencies [0.02,0.03,0.04,0.06,0.08] for
meta-training and [0.05,0.07] for meta-testing. Our controller
runs at 250 Hz, and for each frequency we collect 30s of data.

Figures 3 (a) and (b) demonstrate that meta-training learned
losses with a structure, (i.e, both structured and state-
dependent losses) is much more stable than meta-training the
mlp learned loss. From Figures 3(c) and (d), we again note
that inverse-dynamics models train much faster when learned-
losses are used for optimization as opposed to MSE loss in
the order: state-dependent > structured > mlp.

B. Online Adaptation on Pick and Place Task

We now use the learned losses to online learn the inverse
dynamics model of a pick and place task.

We collect 3 trials of picking-and-placing a milk carton,
which weighs 857 grams, and separate the task into 5 motions:
reaching for the carton (reach), lifting the carton (lift), moving
the carton across the table (move-over), putting the carton
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Fig. 4: Online Adaptation on 5 motions: The 1st row depicts a the mean torque across all joints while executing these motions. 2nd row
depicts the performance (MSE) of fθ as it is being adapted on the 5 motions using Llearnφ

or LMSE. Models trained using state-dependent
loss significantly outperforms all other losses including models trained using MSE losses with adaptive optimizers such as Adam (row 3)

down (move-down), and retracting the arm to it’s rest posture
(retract).

For each trial, the inverse-dynamics model fθ is initialized
randomly and then trained by online updating its parameters
θ using the various learned losses on the stream of sequential
data points {qt , q̇t , q̈t+1,τt} we receive while undergoing each
of the above 5 motions. We train our model fθ on each
motion sequentially, always warm-starting the model for the
next motion.

We record the MSE between predicted and actual torques
while training on each task in sequence with the learned losses
mlp, structured and state-dependent each with learning rates
0.001, as well as the MSE loss with learning rates 0.001 and
0.01 and plot these in Figure 4. The second row of the same
Figure shows the training curves that use the learned losses on
real robot sine-motion data. We observe that all learned losses
outperform the standard MSE loss; most strikingly the state-
dependent loss significantly outperforms all other losses. It is
able to achieve low error predictions throughout all motions.

We note that models optimized with learned losses perform
consistently better than those optimized using the MSE loss
at the same learning rate - 0.001. We further note that the
state-dependent loss outperforms all other losses (including
the model trained with MSE loss at a higher learning rate, as
well as an adaptive optimiser such as Adam).

This strongly supports our hypothesis that the loss landscape
for inverse-dynamics is dependent on the current joint state
(q, q̇). Additionally, we observe that the evaluation curves for
the state-dependent loss are much smoother and show less
variance across multiple trajectories (which follow the same
motion as we progress through training fθ ). This indicates
that training a model with state-dependent loss on an online
stream of data is significantly more stable than training with
other learned-losses or MSE.

The variance of the other curves likely correlates to the
rising and falling torque values throughout the motion. Most of
the other models do not appear to adapt well to this variance,
resulting in large errors.

The state-dependent loss is however, able to consistently
produce low MSE metrics: which provides evidence that it
adjusts well to unexpected changes in torque. Consequently,
these results suggest that keeping track of state allows our
learned loss to better adapt where torque values may be higher
(for example, in cases of stiction in our robot joints).

V. CONCLUSION

In this work, we contribute a framework for learning loss
functions, apply it to inverse dynamics models and improve
upon previous loss-learning [3] methods by adding structure
and state dependency to the loss representations. Our results
show show that adding structure to the learned loss produces
faster, better and more stable adaptation on hardware data
when compared to learned losses without structure or standard
domain-independent losses.

We see several promising directions for further research
involving the methods we have introduced in this work.
Currently, due to safety concerns, the online adaptation exper-
iments on the hardware were performed using data collected
offline from the robot, but fed to the model sequentially,
mimicking an actual online setting. In future, we plan on
investigating methods to safely apply meta-learning directly
on robots. Another direction would be to investigate the state-
dependent loss further in order to verify some of our hypothe-
ses relating to its exceptional performance. For instance, we
would like to visualize the inner workings of this loss. Given
our proposed methods’ suitability to online adaptation of any
type of model, another interesting extension of this work could
be adapting it to do parameter estimation for robots [2, 22]
online.
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