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Abstract—When interacting with highly dynamic environ-
ments, scene flow allows autonomous systems to reason about
the non-rigid motion of multiple independent objects. Current
state-of-the-art methods require annotated scene flow data from
autonomous driving scenes to train scene flow networks with
supervised learning. As an alternative, we present a method
of training scene flow that uses two self-supervised losses,
based on nearest neighbors and cycle consistency. These self-
supervised losses allow us to train our method on large unlabeled
autonomous driving datasets; the resulting method matches
current state-of-the-art supervised performance using no real
world annotations and exceeds state-of-the-art performance when
combining our self-supervised approach with supervised learning
on a smaller labeled dataset.

I. INTRODUCTION

For an autonomous vehicle, understanding the dynamics of
the surrounding environment is critical to ensure safe planning
and navigation. It is essential for a self-driving vehicle to be
able to perceive the actions of various entities around it, such
as other vehicles, pedestrians, and cyclists. In the context of
data recorded as 3D point clouds, a motion can be estimated
for each 3D point; this is known as scene flow, which refers
to the 3D velocity of each 3D point in a scene.

Recent state-of-the-art methods learn to estimate the scene
flow from 3D point clouds [4, 3, 10, 12]. However, these
methods are fully supervised and require annotated datasets for
training. Such annotations are costly to obtain as they require
labeling the motion for every point in a scene. To compensate
for the lack of real world data, learning-based methods for
scene flow have been trained primarily on synthetic datasets.
This requirement of labeled training data limits the effective-
ness of such methods in real world settings.

To overcome this limitation, we propose a self-supervised
method for scene flow estimation. Using a combination of two
self-supervised losses, we are able to mimic the supervision
created by human annotation. Specifically, we use a cycle
consistency loss, which ensures that the scene flow produced
is consistent in time (i.e. we ensure that a temporal cycle
ends where it started). We also use a nearest neighbor loss,
considering the nearest point to the predicted translated point,
in the temporally next point cloud, as the pseudo-ground
truth association. We show that this combination of losses
can be used to train a scene flow network over large-scale,
unannotated datasets containing sequential point cloud data.
An overview of our method can be found in Figure 1.

We test our self-supervised training approach using the
neural network architecture of a state-of-the-art scene flow
method [4]. The self-supervision allows us to train this net-

Fig. 1: We use two self-supervised losses to learn scene flow
on large unlabeled datasets. The “nearest neighbor loss” pe-
nalizes the distance between the predicted point cloud (green)
and each predicted point’s nearest neighbor in the second point
cloud (red). To avoid degenerate solutions, we also estimate
the flow between these predicted points (green) in the reverse
direction back to the original point cloud (blue) to form a
cycle. The new predicted points from the cycle (purple) should
align with the original points (blue); the distance between these
two set of points forms our second self-supervised loss: “cycle
consistency.”

work on large-scale, unlabeled autonomous driving datasets.
Our method matches the current state-of-the-art performance
when no real world annotations are given. Moreover, our
method exceeds the performance of state-of-the-art scene flow
estimation methods when combined with supervised learning
on a smaller labeled dataset.

II. RELATED WORK

Scene Flow: Vedula et al. [9] first introduced the task of scene
flow estimation. They propose a linear algorithm to compute
it from optical flow. State-of-the-art scene flow methods today
use deep learning to improve performance. FlowNet3D [4]
builds on PointNet++ [8, 7] to estimate scene flow directly
from a pair of point clouds. Gu et al. [3] produced similar
results using a permutohedral lattice to encode the point cloud
data in a sparse, structured manner.
Self-Supervised Learning: Wang et al. [11] used self-
supervised learning for 2D tracking on video. They propose a
tracker which takes a patch of an image at time t and the entire
image at time t − 1 to track the image patch in the previous



frame. They define a self-supervised loss by tracking the patch
forward and backward in time to form a cycle while penalizing
the errors through cycle consistency and feature similarity. We
take inspiration from this work for our self-supervised flow
estimation on point clouds. Concurrent to our work, Wu et
al. [12] showed that Chamfer distance, smoothness constraints,
and Laplacian regularization can be used to train scene flow
in a self-supervised manner.

III. METHOD

A. Problem Definition

For the task of scene flow estimation, we have a temporal
sequence of point clouds: point cloud X as the point cloud
captured at time t and point cloud Y captured at time t +
1. Each point pi = {xi, fi} in point cloud X contains the
Cartesian position of the point, xi ∈ R3.

The scene flow, D = {di}N , di ∈ R3 between these two
point clouds describes the movement of each point xi in point
cloud X to its corresponding position x′i in the scene described
by point cloud Y , such that x′i = xi + di, and N is the size
of point cloud X . Scene flow is defined such that xi and x′i
represent the same 3D point of an object moved in time. Unlike
optical flow estimation, the exact 3D position of x′i may not
necessarily coincide with a point in the point cloud Y , due to
the sparsity of the point cloud, and the sizes of X and Y may
be different.
Supervised Loss: The true error associated with our task is the
difference between the estimated flow g(X ,Y) = D̂ = {d̂i}N
and the ground truth flow D∗ = {d∗i }N ,

Lgt =
1

N

N∑
i

‖d∗i − d̂i‖2. (1)

The loss in Equation 1 is useful because it is mathematically
equivalent to the end point error, which we use as our evalu-
ation metric. However, computing this loss requires annotated
ground truth flow d∗i . While training on purely synthetic data is
possible, large improvements can often be obtained by training
on real data from the domain of the target application. For
example, Lui et al. [4] showed an 18% relative improvement
after fine-tuning on a small amount of annotated real world
data. This result motivates our work to use self-supervised
training to train on large unlabeled datasets.
Nearest Neighbor (NN) Loss: For large unlabeled datasets,
since we do not have information about d∗i , we cannot compute
the loss in Equation 1. In lieu of annotated data, we use
the nearest neighbor of our transformed point x̂′i = xi + d̂i
as an approximation for the true correspondence. For each
transformed point x̂′i ∈ X̂ ′, we find its nearest neighbor yj ∈ Y
and compute the Euclidean distance to that point, illustrated
as eNN in Figure 2a:

LNN =
1

N

N∑
i

min
yj∈Y

‖x̂′i − yj‖2. (2)

Assuming that the initial flow estimate is sufficiently close
to the correct flow estimate, this loss will bring the transformed

(a) Nearest Neighbor Loss (b) Cycle Consistency Loss

Fig. 2: Example of our self-supervised losses between consec-
utive point clouds X (blue) and Y (red). (a) Nearest Neighbor
Loss is computed between the projected point x̂′, predicted
by the forward flow, and the closest point in Y . (b) The
Cycle Consistency Loss tracks this transformed point back
onto its original frame, as point x̂′′, using the reverse flow,
and computes the distance to its original position x.

point cloud and the target point cloud closer. This loss can,
however, have a few drawbacks if imposed alone. The true
position of the point xi transformed by the ground truth flow,
x′i = xi + d∗i , may not be the same as the position of the
nearest neighbor to x̂′ (transformed by the estimated flow) due
to potentially large errors in the estimated flow, as illustrated in
Figure 2a, and this loss does not penalize degenerate solutions
where many of the points in X map to the same point in Y .
To address these issues, we use an additional self-supervised
loss: cycle consistency loss.
Cycle Consistency Loss: To avoid the above issues, we in-
corporate an additional self-supervised loss: cycle consistency
loss, illustrated in Figure 2b. We first estimate the “forward”
flow as D̂ = g(X ,Y). Applying the estimated flow d̂i ∈ D̂
to each point xi ∈ X gives an estimate of the location of the
point xi in the next frame: x̂′i = xi + d̂i. We then compute
the scene flow in the reverse direction: for each transformed
point x̂′i we estimate the flow to transform the point back to
the original frame, D̂′ = g(X̂ ′,X ). Transforming each point
x̂′i by this “reverse” flow d̂′i gives a new estimated point x̂′′i . If
both the forward and reverse flow are accurate, this point x̂′′i
should be the same as the original point xi. The error between
these points, ecycle, is the “cycle consistency loss,” given by

Lcycle =

N∑
i

‖x̂′′i − xi‖2. (3)

A similar loss is used as a regularization in [4].
However, we found that implementing the cycle loss in

this way can produce unstable results if only self-supervised
learning is used without any ground-truth annotations. These
instabilities appear to be caused by errors in the estimated flow
which lead to structural distortions in the transformed point
cloud X̂ ′, which is used as the input for computing the reverse
flow g(X̂ ′,X ). This requires the network to simultaneously
learn to correct any distortions in X̂ ′, while also learning to
estimate the true reverse flow. To solve this problem, we use
the nearest neighbor yj of the transformed point x̂′i as an
anchoring point in the reverse pass. Using the nearest neighbor
yj stabilizes the structure of the transformed cloud while still
maintaining the correspondence around the cycle.

Specifically, we compute the anchored reverse flow as



follows. First, we compute the forward flow as before, D̂ =
g(X ,Y), which we use to compute the transformed point cloud
x̂′i = xi + d̂i. We then compute anchor points X̄ ′ = {x̄′i}N as
a convex combination of the transformed point and its nearest
neighbor x̄′i = λx̂′i + (1 − λ)yj . In our experiments, we find
that λ = 0.5 produces the most accurate results. Finally,
we compute the reverse flow using these anchored points:
D̄′ = g(X̄ ′,X ). The cycle loss of Equation 3 is then applied
to this anchored reverse flow. By using anchoring, some of
the structural distortion of the predicted point cloud X̂ ′ will
be removed in the anchored point cloud X̄ ′, leading to a more
stable training input for the reverse flow.

IV. EXPERIMENTS

We run several experiments to validate our self-supervised
method for scene flow estimation for various levels of su-
pervision and different amounts of data. First, we show that
our method, with self-supervised training on large unlabeled
datasets, can perform as well as supervised training on the ex-
isting labeled data. Next, we investigate how our results can be
improved by combining self-supervised learning with a small
amount of supervised learning, exceeding the performance of
purely supervised learning. Finally, we explore the utility of
each element of our method through an ablation study. For all
data configurations (our method and the baseline), we initialize
our network with the parameters of the Flownet3D model [4]
pre-trained on the FlyingThing3D dataset [5]. We compare our
self-supervised training procedure to a baseline which uses
supervised fine-tuning on the KITTI dataset [2].

A. Datasets
KITTI Vision Benchmark Suite: KITTI [2] is a real-world
self-driving dataset. There are 150 scenes of LIDAR data in
KITTI collected using seven scans of a Velodyne 64 LIDAR,
augmented using 3D models, and annotated with ground truth
scene flow [6]. For our experiments under both self-supervised
and supervised settings, we consider 100 out of 150 scenes
for training and the remaining 50 scenes for testing. Ground
points are removed from every scene using the pre-processing
that was performed in previous work [4]. To reduce forward
motion bias in all training sets, we flip the point clouds with
probability 0.5, i.e. reversing the flow.
nuScenes: The nuScenes [1] dataset is a large-scale public
dataset for autonomous driving. It consists of 850 publicly
available driving scenes in total from Boston and Singapore.
The LIDAR data was collected using a Velodyne 32 LIDAR.
Since the nuScenes dataset [1] does not contain scene flow an-
notations, we must use self-supervised methods when working
with this dataset. In our experiments, out of the 850 scenes
available, we use 700 as the train set and the rest 150 as the
validation set. Similar to KITTI, we remove the ground points
from each point cloud using a manually tuned height threshold,
and flip the input point clouds.

B. Results
We use three standard metrics to quantitatively evaluate the

predicted scene flow when the ground truth annotations of

scene flow are available. Our primary evaluation metric is
End Point Error (EPE) which describes the mean Euclidean
distance between the predicted and ground truth transformed
points, described by Equation 1. We also compute accuracy at
two threshold levels, Acc(0.05) as the percentage of scene flow
prediction with an EPE < 0.05m or relative error < 5% and
Acc(0.1) as percentage of points having an EPE < 0.1m or
relative error < 10%, as was done for evaluation in previous
work [4].
Self-supervised training: Unlike previous work, we are not
restricted to annotated point cloud datasets; our method can
be trained on any sequential point cloud dataset. There are
many point cloud datasets containing real LIDAR captures of
urban scenes, but most of them do not contain scene flow
annotations. Due to lack of annotations, these datasets can
not be utilized for supervised scene flow learning. In contrast,
our self-supervised loss allows us to easily integrate them into
our training set. The combination of these datasets (KITTI +
NuScenes) contains 5x more real data than using KITTI alone.

The results are shown in Table I. To show the value of
self-supervised training, we evaluate the performance of our
method without using any ground-truth annotations. We first
pre-train on the synthetic FlyingThings3D dataset; we then
perform self-supervised fine-tuning on the large nuScenes
dataset followed by further self-supervised fine-tuning on
the smaller KITTI dataset (4th row: “Ours: nuScenes (Self-
Supervised) + KITTI (Self-Supervised)”). As can be seen,
using no real-world annotations, we are able to achieve an EPE
of 0.105 m. This outperforms the baseline of only training on
synthetic data (“No Fine Tuning”). Even more impressively,
our approach performs similarly to the baseline which pre-
trains on synthetic data and then does supervised fine-tuning
on the KITTI dataset (“KITTI (Supervised)”); our method
has a similar EPE and outperforms this baseline in terms of
accuracy, despite not having access to any annotated training
data. This result shows that our method for self-supervised
training, with a large enough unlabeled dataset, can match the
performance of supervised training.
Self-supervised + Supervised: We show the value of combin-
ing our self-supervised learning method with a small amount
of supervised learning. For this analysis, we perform self-
supervised training on NuScenes as above, followed by super-
vised training on the much smaller KITTI dataset. The results
are shown in the last row of Table I.

As can be seen, this approach of self-supervised training fol-
lowed by supervised fine-tuning outperforms all other methods
on this benchmark, obtaining an EPE of 0.091, outperforming
the previous state-of-the-art result which used only supervised
training. This shows the benefit of self-supervised training on
large unlabeled datasets to improve scene flow accuracy, even
when scene flow annotations are available.
Qualitative Analysis: We perform a qualitative analysis to
visualize the performance of our method. We compare our
method (synthetic pre-training + self-supervised training on
nuScenes + self-supervised training on KITTI) compared to
the baseline of synthetic training only. Results on KITTI
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Fig. 3: Scene flow estimation between point clouds at time t (red) and t + 1 (green) from the KITTI dataset trained without
any labeled LIDAR data. Predictions from our self-supervised method, trained on nuScenes and fine-tuned on KITTI using
self-supervised learning is shown in blue; the baseline with only synthetic training is shown in purple. In the absence of
real-world supervised training, our method clearly outperforms the baseline method, which overestimate the flow in many
regions.

Training Method EPE (m) ↓ ACC (0.05) ↑ ACC (0.1) ↑
No Fine Tuning 0.122 25.37% 57.85%
KITTI (Supervised) 0.100 31.42% 66.12%
Ablation: KITTI (Self-Supervised) 0.126 32.00% 73.64%
Ours: nuScenes (Self-Supervised) + KITTI (Self-Supervised) 0.105 46.48% 79.42%
Ours: nuScenes (Self-Supervised) + KITTI (Supervised) 0.091 47.92% 79.63%

TABLE I: Comparison of levels of supervision on KITTI dataset. The nearest neighbor + anchored cycle loss is used for
nuScenes (self-supervised) and KITTI (self-supervised). All methods are pretrained on FlyingThings3D[5] and ground points
are removed for KITTI and nuScenes datasets.

NN Loss Cycle Loss Anchor EPE (m)↓ ACC (0.05)↑ ACC (0.1)↑
X X 0.1572 18.50 52.80

X X 0.1090 34.88 71.32
X X 0.0932 28.18 66.10
X X X 0.0912 47.92 79.63

TABLE II: We study the effect of removing a single compo-
nent of self-supervised loss and data augmentation. Models
use self-supervised training on nuScenes and KITTI.

are shown in Figure 3. The figure shows the point clouds
captured at time t and t + 1 in red and green, respectively.
The predictions from our method are shown in blue and the
baseline predictions are shown in purple. As shown, our scene
flow predictions (blue) have a large overlap with the point
cloud at time t + 1 (green). On the other hand, the baseline
predictions (purple) do not overlap with the point cloud at
time t+ 1. The baseline, trained only on synthetic data, fails
to generalize to the real-world KITTI dataset. On the contrary,
our self-supervised approach can be fine tuned on any real
world environment and shows a significant improvement over
the baseline.
Ablation Studies: We test the importance of each component

of our method by running a series of ablation studies. Table II
shows the effect of removing a single portions of our method
using the purely self-supervised training.

V. CONCLUSION

In this work, we propose a self-supervised method for
training scene flow algorithms using a combination of cycle
consistency in time and nearest neighbor losses. Our purely
self-supervised method is able to achieve a performance com-
parable to that of the supervised methods on the widely used
KITTI self-driving dataset. We further show that when super-
vised training is augmented with self-supervision on a large-
scale, unannotated dataset, the results exceed the current state-
of-the-art performance. Our self-supervision method opens the
door to fine-tuning on arbitrary datasets that lack scene flow
annotations. Please see our full paper for more information 1.
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